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A theoretical study of the potential—time response corresponding to the CE and EC mechanisms
at the DME by using non linear perturbation functions with the general form 1(t) = IoteWt and
1(t) = 10(t1 + t' is presented. Equations for the potential—time curves and for the transition
times have been derived by taking into account the sphericity of the electrode. Methods for
determining heterogeneous and homogeneous kinetic parameters are proposed. The expressions
corresponding to a null blank period, to an expanding plane electrode and to spherical and plane
stationary electrodes, can be deduced as particular cases of the equations obtained in this work.

We have previously developed the theory concerning the use of several non linear
current—time functions (ctf's) at the dropping mercury electrode (DME), for charge
transfer reactions (ctr's)1 ,2• The aim of this work is the application of that theory
to the study of the CE and EC mechanisms with different electrodes. The ctf's used
can be divided into two types. First, functions which are the product of an exponential
by a power, i.e., 1(t) = Iotewt (the power law current and the exponential law current
are obtained as particular cases of this general function). Secondly, power law
functions of the total time, 1(t) = I0t. The broad class of ctf's used in this paper
can be applied to any type of dependent-time area electrodes by using, necessarily,
a preceding blank period t1 (ref.1).

Fot all the perturbations considered, we have deduced the concentration profiles
C(r, t), the surface concentrations C.(r0, t) and the E/t response concerning both
processes, assuming the expanding sphere electrode model (ESE) for the DME.
The response corresponding to any stationary spherical electrode (SSE) and for any
stationary plane electrode (SPE) can be deduced as particular cases of our equations.

When the blank period t1 is null, and the ctf has the simplified form 1(t) =IotU,
our equations are coincident with those deduced by Gálvez et al.3 For an ex-
panding plane electrode (EPE), and when the diffusion coefficients of all the species
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are equal, our equations are equivalent to those recently obtained by Kant and
Rangarajan6 for power law currents.

Finally, methods for the calculation of kinetic parameters of the homogeneous
and heterogeneous steps are also proposed.

FORMULATION OF THE PROBLEM

The schemes corresponding to the CE and EC mechanisms are, respectively

kB>C+neD, (1)k,,

ktA+neB"C. (II)

The boundary value problem (bvp) associated to process (I), neglecting double
layer effects, is given by

&BCB = öcCc = kICB + k2C, (1)

öDCD—O, (2)

t = 0, r > r0)
CB = C1, C = C, CD = CD, (3)t>0, r-+oo)

t>0, r=r0:
D ( = — DD (3C = 1(t)

(4)
t3r )rrO \ 3r )rro nFA(t,)

DB(- =0, (5)\ r Jrro

= k1 Cc(ro, t) — kb CD(rO, t). (6)

The bvp corresponding to process (II) can be obtained by changing D for A in
Eqs (2)—(4), C for B and 1(t) for —1(t) in Eq. (4), B for C in Eq. (5), and finally C
for A and D for B in Eq. (6).

ö, is the operator corresponding to an ESE (ref.7)

/2 3
= — — D1(— + —— + —— (7)3t \ar2 r arJ 3r2 r

and D, is the diffusion coefficient of species i.
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Theoretical Study of CE and EC Mechanisms 3

We have supposed for the processes (I) and (II) respectively

DB=Dc+DD) (8)4 D = D J

We will consider the following general forms for the ctf applied to the DME
after a blank period t1.
1) Power-exponential law current of time

1(t) = Iotuew( u —1/2, Vw

Ia) power law current of time

1(t) = 10ts4, u —1/2

Ib) exponential law current of time

1(t) = Ioewt , Vw

2) Power law current of total time t

rI\ iv j— içi , vV

A discussion of the values of the exponents u, w and v can be found in refst2.

CASE 1: POWER-EXPONENTIAL LAW CURRENT

Using the transformations

(9)

Iil = (GB — KCc) c" (10)

Eqs (1) and (2) are transformed into (process (I))

= = öDCD = 0. (11)

For process (II) we must change D for A in Eq. (11).

By introducing the variables

21D t1= r r0 = / -
(12) (13)'

2(D1t)1
'

at"3
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1 \ 1/3
= Xi = kt, Q = wt (14), (15), (16)

we can deduce equations of the concentration profiles, as shown in Appendix I
(Eqs (A1)—(A3)), and also the expressions for the surface concentrations cor-
responding to a CE process, which are

m+2/3cco = 1
— Nt

[Sm(C, flu, Q) + KTm(, Xi' $, (/7)I +K<

CD(rO, t) ycENcEtPCE + Sm(1D, I1, Q). (/8)*
(S

For an EC mechanism we find

m+2/3CA(ro,t) = — cL Sm(A, fl, Q), (/9)c
CB(rO,t) I

{K
YECNECt

+ k PEC +
2/3 [KSm(, flu, Q) + Tm(, Xi' fl, Q)]}

A s

(20)
where

in = u —
1/6 (21)

D 1/2 2I
(22)'CE =(

\DD)
= D

NCE
nFD2Ao*

fDA 12 * 2I
(23)

\DB)
' PEC =, =

flFD'2AOCA
YEC

and the series S, and Tm are defined in Appendix I.

The transition time corresponding to a CE mechanism is deduced from Eq. (17)

(t1 + )2/3= (24)
NCE[Sm(C,c, flj,, �2) + 1(Tm(,x, fli,, Qc)]'

where C,t' and are the values of these variables for t =
The potential—time functions (ptf's) can be deduced inserting Eqs (17) and (18)

Collection Czechoslovak Chem. Commun. (Vol. 56) (1991)



Theoretical Study of CE and EC Mechanisms 5

in Eq. (6)

NCEIm + 2/3e(t)— h/2e1? 1ØU1(t) =

= 1

{t' — NCEtm+213 [Sm(, fii Q) + KTm(, Xi' Pu' Q)]}

— + YCENCEI' Sm(D, Iii, Q)} , (25)

D112
OCE(t)' C

(26)
2kt"2

(t) RTln
(E(t) - E°). (27)

For a reversible ctr (k > 1), Eq. (25) takes the more simple form

17(t) = log
—

NCEtm+2/3[Sm(C, flu, Q) + KTm(CC, Xi' fl1' Q]
(28)

(1 + K) [cEt'3 + YCENCEt' Sm(t0, fl1, Q)]

and for an irreversible one (k c 1)

11(t)
.!- log

t213 — NCEtm+ 213[Sm(, flu, Q) + KTm(C, Xi' j3, Q)]
(29)

(1 + K) NCEtm+2/3 OCE(t)' e

The transition time deduced for an EC process from Eq. (19) is, as it is well known,
identical to that obtained for an E process1, and the ptf's can be deduced by substi-
tuting Eqs (19) and (20) in Eq. (6). Then, we obtain

NECtm+213 OEC(t)' en 10(t) = — NECtm+213 Sm(A ,8, Q)

10(t)—

1 + K {K/1ECt + YECNECt 213[KSm(, fyi, Q) + Tm(, Xi, flu, Q)]} , (30)

D'12
OEC(t)112

A
(31)

2kt"2

The ptf for an irreversible ctr is clearly coincident to that obtained for an E process1.

Power Law Current (la)

The equations corresponding to this case can be obtained by making q 0 in the
series Sm and Tm (Eqs (A /9) and (A20)).
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Exponential Law Current (ib)

Now, we can deduce the corresponding expressions by making m = — 1/6 (u = 0)
in the series Sm and Tm (Eqs (A19) and (A20)).

CASE 2: POWER LAW CURRENT OF THE TOTAL TIME t

The method used in this case differs from that used in the three preceding cases.
Now we should introduce a new variable defined as

= (CB — KCC) e"t (32)

instead of the variable eli defined in Eq. (10). Furthermore, the dimensionless para-
meter Q disappears, and instead of the variables 13i and we must introduce the
variables f32 and X2 respectively, given by

P2 = (j-) = kt. (33), (34)

In this way, we obtain the Eqs (B5)—(B8) in Appendix II for the surface con-
centrations.

RESULTS AND DISCUSSION

The equations obtained in this paper allow us to carry out a complete analysis of
the CE and EC processes using ctf's corresponding to cases 1 and 2 (see the preceding
section). These equations give the concentration profiles (Eqs (Al)— (A3) and (Bi)—
— (B3)) and the surface concentrations (Eqs (1 7)—(20) and (B5)—(B8)). Here, we
will only employ the equations corresponding to surface concentrations for the
study of the E/t response obtained in the CE and EC processes. The analysis of
concentration profiles C1(r, t) requires a separate study and is not dealt with here.

GENERAL ASPECTS OF THE EQUATIONS

The E/t response for the CE and EC processes deduced for a ctf corresponding to
case 1 depends on the series Sm and T, (Eqs (A19) and (A20)), while that corresponding
to case 2 depends on the series Vm and Wm (Eqs (B9) and (BlO)).

The series Sm and Vm are the same as those deduced for an E process in both cases
(Eqs (Al9) and (B9)). The series Tm and Wm have been obtained in this paper, they
have upper and lower limits and satisfy the inequalities

o Tm(i, Xi Q) Sm(i, P, �2), (35)
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Theoretical Study of CE and EC Mechanisms 7

0 � X2, $2) Vm(i, $2). (36)

For large values of Xi or X2 the series Tm and Wm are slowly convergent. In these
conditions, we may apply the steady state approximation8, and proceeding as in
a previous paper3 we deduce

e'
Tm(i,Xi,$i,Q) = Xi 1.

2X2

1
Wm(i, X2' $2) = X > 1.

2fl2x'2

(37)

(38)

In Fig. 1 we have plotted Tm vs Xi when Q = 0 (case la), for an EPE = 0)
corresponding to two limit situations: t1 = 0 (fJ = 1) and t1 t (1J1 = 0) (curves a
and b), and for an ESE ( = O2 s 116) with the same values of $ (curves c and d).
It should be noticed that the influence of fl and c on Tm is small.

The influence of Q and m on Tm (case 1) is clearly shown in Fig. 2. it can be deduced
from the curves that Eq. (35) holds.

From the general equations (17)—(20) and (B5)—(B8) it is possible to deduce
those corresponding to a great number of special situations, some of which have
already been described in the literature.

FIG. 1

xl

Dependence Of fl1,Q) on x1 (Eq.
(A20)) for the case la) with m = 1/2. The
values of and /1 are, respectively: a 00,

10; b 00, 00; c 02, FO; ci 02, 00

FIG. 2

Dependence Of f11,Q) Xi (Eq.
(A20)) for the case 1. The values of Q are
shown on the curves. The values of m are:
-—l/2( ); 1/6(— —);5/6(").= 0,= 0•5
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a) Null Blank Period

In these conditions $ = I2 = 1, X = X2 and the Eqs (A19) and (A20) for w = 0
and u 1/6 are equivalent to Eqs (B9) and (Blo) for v 1/6. Moreover, we have
the following relationships

Sm(' $1 = 1, Q 0) Vm(, $2 1) = (3/7)1/2 Gm(0, t)
(39)

P6m/7

Xi' $1 = 1, Q = 0) = Wm(, X2 $2 1)
(3/7)1/2 Gm,e(X)

(40)
P6m/7

where the functions Gm,e(X) and gm(O, t) are given by Eqs (Al) and (A2) in ref.4,.
where there is no blank period (see also curves a and c in Fig. 1).

b) Current Step 1(t) = jo

This situation can be obtained from cases 1 and/or 2 by making w = 0 and u = 0
(in — 1/6) and/or v = 0 (m = — 1/6), respectively. In these conditions we dedtice

(Eqs (A19)—(A20) and (B9)—(B10))

s_116(, $) = v_1(, $2)' (41)

T_16(, Xi, $) = w_116(, X2' $2) (42)
where

X2j. (43)

c) Expanding Plane Electrode Model

We can deduce the equations corresponding to this particular situation by making
= 0 in all the expressions in this paper. This model has recently been studied by

Kant and Rangarajan6, for ctf's corresponding only to cases la) and 2 of this paper,
and with the additioned assumption that the diffusion coefficients of all species are
equal. In these conditions, our equations are equivalent to those deduced by these
authors (see also Table I).

d) Stationary Electrodes

The DME, considered as an EPE ( = 0) or as an ESE (4z 0), can be transformed
into a stationary electrode of area A = A0t3 by making t1 >> t (i.e. flu = $2 0,.

curves b and d in Fig. 1). In this situation, the E/t response is much simple, and can
be compared with that given in ref.9 and in the reviews of CE and EC mechanisms
in refs10"t.
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TRANSITION TIMES

In Table I we show the values obtained for transition times corresponding to a CE
mechanism for an EPE = 0) and for an ESE + 0), for a ctf corresponding
to the case la) and for different values of u and t1. We have selected the same con-
ditions as in Table II in ref.6 to compare. As can be observed, the values of 'rp agree
with those obtained in this reference. We can also deduce that the sphericity effects
are important and they increase strongly when u decreases.

Table II shows the transition times t,, and calculated for a ctf corresponding
to case 2. For this ctf, when v = 2/3 (the density of current remains constant) the

TABLE I

Comparison between the transition times obtained from Eqs (24) and (37) when w = 0 (case la)
for an expanding plane electrode, , (o 0) and for and expanding sphere electrode, Te
('5oc = 015 5_116) NCE 27Stm, K= 1, k 25 s, ( ) N < (NCE)min

U
t1=

Vp

05

Ve

t1=l

Vp te

t1=

p

15

te

t1=2

p Te

t1=

Vp

25
-

Ve

1 0983 1024 1189 1232 1352 1392 1487 1532 1609 1657

2/3 0849 0904 1137 1202 1366 I436 I566 1643 1746 1830

1/2 0726 0•787 1076 1157 1362 1456 F616 1726 1849 1972

1/3 054l 0598 0961 1062 1334 1467 1676 1847 2001 2205

1/6 0294 0328 O742 0853 1233 1436 1745 2065 2271 2721

0 OO79 0085 0378 0442 0928 F218 180l 3420 3200 —

—1/30 OO53 0057 0296 0344 0819 1120 1'799 — — —

TABLE II

Comparison between the transition times obtained from Eqs (B5) and (38) (case 2) for an ex-
panding plane electrode, r1, = 0) and for and expanding sphere electrode, ('o.c 015
Sh/6),NCE=2.45m,K=1,k=1051

V
t=1

Vp e

t1= 15

Vp

t1=
—

Vp

2
-

re

t1=25-
Vp

1 0l87 0197 0125 0130 0090 0093 0068 0069

2/3 02l9 0•234 0216 0228 0215 0225 0214 0224
1/2 024l 0259 0290 03l1 0331 0353 0365 0389
1/3 0270 0295 0404 0442 0528 0579 0644 0707
1/6 03I2 0•348 0607 0700 0938 1l04 F292 1548
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10 Molina, López-Tenés:

effect of t1 on t1, and -r is minimal. The sphericity effects are qualitatively similar
to those described for Table I.

The effects of reversibility (K) and rate constants (k) of the chemical reaction on
the transition times are similar to those described in refs3'6.

Equations (17) and (B5) can be rewritten as

(1 + K) Cc(ro, t) = — Hm(, Xi, $1, �2), (44)

(1 + K) Cc(ro, t) — 1

r*Ttr
— — m(, X2 112), ( 5)

s CE

where

tm+ 2/3
Hm(, Xi' hi, 2) = [Sm(, hi, 12) + KTm((C, Xi' 12)], (46)

ti'2
Hm(, X2 132) =

t/2_m
[Vm(C, 12) + KWm(, X2 /32)] . (47)

In the same way as for an E process, a study of the behaviour of the function H
with t permits us to determine the interval of existence of the transition time -r,
corresponding to a CE process. In Fig. 3 we have plotted H vs t for a ctf with w =
= O15 and u = —1/3 (case 1). In this situation there always exists a transition
time, but it presents a jump discontinuity with NCE (ref.1). It can be observed that
the jump increases with k (i.e. as a CE process becomes an E process). In general,
the variation of H with t is qualitatively similar to that described in refst'2 for an E
process, and when an NCE minimal exists, its value diminishes when k gets smaller.

In

- I

102
iO

FIG.3I
Depedence of Hm(c, Xi, fl1, Q) on t for
a CE process (Eq. (46)) for the case 1 with
w=O15s and m=—1/2. =O.l5
5—i/6 1 = s, K= 1. The values of k

10 (in s 1) are shown on the curves
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Finally, when u = — 1/2 and for any value of w (case 1) there exists an NCE maximal,.
which is given by

2t213(NCE) = 1
(48)mdx

(1 + K) 1/2

It is also possible to determine K for a CE process by following a similar procedure
to that described in refs3'12. So, from Eq. (24) we find

FAD21*
lim (Itm+213) = C P(6m+4)/3

2(1 + K)

Ia \2
y = (P1t S'm(i,t, $. ,, Q)

Sm(IC,td, flu ,Td' Qtd)
' (50)

FIG. 4

Dependence of (t/rd)tm Y on Xl,T (Eq. (50))
for the case la) with m= —1/2 ( );
m = 0 (— —); m = 1 (...) = 02,= 05 The values of K are shown on the
curves

FIG. 5

Depedence of (T/Vd)m ' on x1 (Eq. (50)) for
the case 1 with m = —1/2 and Q = —05
( ); Q_ ..Ø. ( —); Q= (...)

= Ø7 Other conditions as in Fig. 4

Collection Czechoslovok Chem. Commun. (Vol. 56) (1991)

(49)

The existence of a blank time t1 is of great interest for the determination of K,
since, if t1 = 0 (ref.), the current density necessary for Eq. (49) to be fulfilled is
quite high (it should be noticed that r becomes smaller as I increases).

Once K is determined, the rate constants k1 and k2 can be obtained from the
working curves plotted in Figs 4 and 5. In these figures, we have represented (t/td)my
vs Xi for several values of K, with Ybeing

08

Of

0.4

0.2

L
D
p
p

QI —

>-
E

_Dp
p

10 20 30
Xi,t Xi
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C,td' fl ,Td and are the values of these variables for t = d (see Symbols). Figures 4
and 5 show the influence of m and Q,, on these curves. The influence of and fJi,,
is very weak and the range of the rate constants that can be determined does not
differ from that indicated in ref.3.

The transition time deduced for an EC mechanism is identical to that corresponding
to an E process, and the situation has already been discussed in refs' ,2

POTENTIAL-TIME CURVES

Figure 6 shows the sphericity effects on the E/t curves obtained for a CE process
with a ctf of the type la) for two different values of the blank period. In general,
these effects increase with t and are more important when the exponents u and w
(case 1), or v (case 2) decrease. Figure 7 shows the dependence of the E/t curves on K
for a reversible ctr. The influence of k (Eq. (25)) is similar to that described in refs' ,2•

>
E

w

Fio. 6

Electrode curvature effects on the potential—
—time curves corresponding to a CE process
when k . I (Eq. (28)) for the case 1 with
w=0is'andu=i( );u=0
(— —). The values of t1 (in s) and NCE
(in m) are, respectively: a 10, 16; b 20,
185; c 10, 20; d 20, 115. T= 298 K,
" 1, YCE = PCE = 0, k = 10 Si, K =
= 2. The values of (in 1/6) are
shown on the curves

Potential—time curves corresponding to a CE
process when k . 1 (Eq. (28)) for the case I
a with u = 2/3 ( ) and for the case 2
with v 2/3 (— —). = O15 s116,

= is, NCE = 15 —1/2 k1 = 10s.
The values ofK are: a 70, b 30, c O1. Other

conditions as in Fig. 6

Collection Czechoslovak Chem. Commun. (Vol. 56) (1991)

>
E

Li

0,15

0.4 0.8 1,2 1.6

t, S
2 2,4 2.8

t, S
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When the ctr is irreversible, we deduce from Eq. (29)

RT nFA0k* RT= ln ———--- + In g(, Xi, fii Q), (51)cnF (1 + K)10 cnF

where

Y(c' Xi Th' = (t13 NCEt"213[Sm(C, fit, Q) + KTm(, Xi' fit' Q)]}

(52)

and the values of and k can be obtained through a linear regression of AE vs
In g(i/, Xi' fir, Q). Moreover, if we take into account the influence of exponents u
and w on the reversibility of the ctr (rcf.1) it is possible to determine values of k
� lO cm s' by using this procedure.

For an EC process, it is not possible to deduce the constants K and k from measure-
ments of transition times. However, from the E/t curves corresponding to a reversible
ctr and when 'K + 0 it is possible to estimate the value of K by an extrapolation at
zero time. In these conditions, from Eq. (30) we obtain

RT "I K 12t213 N 1/2]
E(t 0) — = In L_I ) L I ECJ u = — 1/2 (53)

nF 2KpECt"3 + YECNECTh (1 + K)

RT 1+K
E(t—O)—L =—ln------—--- u> —1/2. (54)nF KIIEC

We have represented these curves in Fig. 8 for a = — 1/2 and different values of K.
It is also possible to determine k1 and k2 in the way indicated in ref.5 for t = 0.

Finally, the dependence of E/t curves (Eq. (30)) on k is shown in Fig. 9. We have
plotted the chronopotentiograms corresponding to = 05 and five different values
of k. These curves are shifted to more negative potentials when k decreases. Further-
more, when k, � i0 cm s' the process becomes totally irreversible, and therefore
the corresponding E/t curves are coincident to those obtained for an E process.
In these conditions we can determine c and k in the vvay indicated in refs' .2

CONCLUSION

We have analyzed the responses corresponding to CE and EC mechanisms when
a broad class of ctf's, included in cases 1 and 2, is applied to the DME. The model
chosen for this electrode is that of an expanding sphere (ESE). The electrode sphericity
effects, which are maximal at the transition time, cannot be neglected when the

Collection Czechoslovok Chem. Commun. (Vol. 56) (1991)



14 Molina, López-Tenés:

exponents of the ctf's diminish. All the expressions obtained previously in the litera-
ture for CE and EC processes in chronopotentiometry with power or exponential
currents for planar and spherical electrodes can be deduced as particular cases of our
equations. The use of ctf's corresponding to case 1 is of great interest, since they
show very different behaviour depending on the relative sign of exponents u and w.
We also propose methods for determining homogeneous and heterogeneous kinetic
parameters by using any of the ctf's analyzed in this paper.

The authors greatly appreciate the financial support by the DirecciOn General de Investigación
Cientifica y Técnica (Project No. PB87-0700) and also by the DirecciOn Regional de Educación
y Universidad de la Comunidad AutO noma de la RegiOn de Murcia (Project No. PCT89/19).

APPENDIX I

Case 1. Power-Exponential Law Current

By using the transformations given by expressions (12)— (16) and supposing that ',(P
and CD have the form

(r, t) = * + Qh,i,j,q(SC) himJ3JQ
h,i,j,q0 (Al)

FIG. 8

Potential—time curves corresponding to an
EC process when k 1 (Eq. (30)) for the
case 1 with w= 1s1 and u= —1/2.
NEC = 2/3, t1 = 2 s, YEC = , PEC I,
k = 05 1 The values of K are shown on
the curves. Other conditions as in Fig. 7

>
E
uJ

FIG. 9

Dependence of potential—time curves cor-
responding to an EC process on k (Eq. (30))
for the case I with w = _o s and u = 1.

NEC= 35/6 DA= 105cm2s1, k=
= I00s, K= 1. The values of k (in
cm _1) are shown on the curves. Other
conditions as in Fig. 7
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J2(r, t) h,i,j,q(SC) +m/3Q, (A2)h,i,j,q0

CD(r, t) = C + crjjq(sD) h1frjQ. (A3)h,i,j,q0

Equation (11) is transformed into

Q,i,j,q(sc) + 2scQ,j,j,q(sc) —
2(3h

+ 6mit2j +
6) Qh,i,j,q(Sc) =

— cjQ,j,j,q(s) + drQ,j,j_,q(Sc) +
f+g+ 1=h r+yh

+ (h + J — 3) Qh,j,j_3,q(Sc)} , (A4)

ö',j,j,q(sc) + 2Scö,j,j,q(sc) —2
(3h+6(m+i)

+ 2j +
6) h,i,j,q(SC)

= Cfö,,j,j,q(sc) + dr5,j,j_3,q(Sc) +
f+g+ 1 =h r+y—h

+ (h+ j 3) h,i,j_3,q(SC)} , (AS)

a,j,j,q(sD) + 2sDc.r,j,j,q(sD) — 2
+

6) 7Ij,j,j,q(SD)

= { C1 U,j,j,q(Sij) + dr 5;,j,j_3,q(SD) +
f+g+ 1=h r+yh

+ (h + J 3) crh,,J 3,q(SD)} , (A6)

where

c1 2(— 1)1 s(, (A7)

dr = (— i) (r + 2) s+'. (A8)

For an EC mechanism we must change D for A in Eqs (A3) and (A6).

The bvp corresponding to a CE process (Eqs (1)—(6) is transformed into

s —÷ c:

Qh,i,j,q(Sc) 5h,i,j,q(Sc) ah,j,j,q(SD) = 0 , h, i, j, q 0 (A9)

s1 = 0:
1

Q,j,j,q(O) —o,j,j,q(O) (A JO)

Q,j,j,q(0) = 0 unless Ii = 0, i = 1, j = 2 (All)
Collection Czechoslovok Chem. Commun. (Vol. 56) (1991)



16 Molina, López-Tenés:

o,1,2q(0) = q > 0 (A12)k q!

Oo.i2,q(0) = —K q. I 0. (A13)k cJ! i!

Moreover

(hi ,j,q(S) = YCE Qh,1.J,(,(SD), (A14)

h,i,j,q(SC) = i,,j,j,q(sc). (A15)

By following a similar prccedure to that indicated in refs1 2 we have deduced the
functions h.1.j,q(SD)and Qh,jJ,(J(sc) which are identical to the O,,j,q(Sj) (i = D or C)
functions obtained in ref.1 for an E process (Eqs (A1O)—(A18) in this reference)
if we change CZ for C*Ncr/kuh. Moreover, for deducing the Qh,j,j,q(SC) functions we
must also change m for (in + i) in the mentioned equations in ref.'. Therefore, the
concentration profiles (Eqs (A1)—(A3)) are determined totally.

The Eqs (A1)—(A3) are simplified at the electrode surface (r = r0) to

(r0, t) = *[l — tmNJ3S,(, /3,, Q)] , (A16)

P(r0, t) = K*tmNs/3Tm(C, Xi /3,, Q) , (A17)

CD(rO, t) = C + y*tmNf3iZSm(,D, /3,, Q) (A18)

with

Sm(i, hi, Q) = -J) — J(m, q, /3k) +
(1_/3_i)}

!,
q0( Pm,q.4 Pm.q,4 q!

(A19)

Xi /3,, Q) = exp (Xi)Sm+i(, Q) , (A2o)

where Pm,q,4' J(m, q, /3,), J,(m, q, /3,) and J2(m, q, 13k) are defined by expressions
(A25) and (A26) in ref.'. From Eqs (A16)—(A18) and taking into account Eqs (9)
and (10) we deduce the expressions (17) and (18) for the surface concentrations.

By following a similar procedure to that described for a CE process we find the
Eqs (19) and (20) corresponding to the surface concentrations for an EC process.
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APPENDIX II

Case 2. Power Law Current of the Total Time t,

By taking into account the Eqs (1)—(8), (12)—(13) and (32)—(34), and supposing
that , (P and CD have the form

(r, t) = * + Q,(s) cxmI3 (B])
h,i,j =0

(P(r, t) = X"/ , (B2)
h,i,j= 0

CD(r, t) = C + a//(sD) (B3)
h,i,j 0

where

in = v— 1/6, (B4)

we deduce the functions Qh,1.J(sc), oi,,1(s) and aJ.l,J(sD) if we follow a similar
procedure to that indicated in Appendix I and in ref.2. The functions Qh,1 ,j(S)
and Q,1(sc) are identical to the functions ci (sc) deduced in ref.2 for an E process
(Eqs (A2)—(A12) in this reference) if we write *NCE/km instead of C. Moreover,
for deducing the functions Q,,,(sc) we must also change in for (m + i) in the men-
tioned equations in ref.2.

In this way, we have deduced the expressions corresponding to the surface con-
centrations of the species C and D for the CE process

C 1 1 N 1/2c(ro, ) = {' - t-m [Vrn(ç, $2) + K Wrn(, X2' $2)]} (B5)

C' N 11/2= P + Vrn(lD, J32). (86)

For an EC process, by following a similar procedure, we deduce

CA(rO, t) = 1 — V ( fi) (B7)1/2-rn rn A 2

'—'A

= L
{KPEC

+ [K Vrn(. $2) + Wrn(, X2• $2)]} (B8)

with

Vrn(ii, $2) = F(m, $2) — F(m, $2) — i F(m, $2) (B9)
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FVm(i, X2, fl2) = e_x2 > Vm+i(i, fl2) , (Blo)

where F(m, 132), F1(m, $2) and F2(m, $2) are defined by Eqs (17), (19) and (21)
in ref.2.

Since the convergence of the Wm series is slightly slower than that corresponding
to the Tm series (Eq. (A20)), in order to obtain accurate results, it is advisable to
choose the values of -r in such a way that J3 05. Moreover, we have calculated
a sixth term, G(m), in the F(m, $2) function which is given by

6858432m6 — 109734912m5 + 622550400m4 — 1757257980m3
G(m)=- -+

64194923520

2019452148m2 — 582399888m + 214128635+-
64194923520

SYMBOLS

k1, k2 rate constants of the chemical reaction
K equilibrium constant of the chemical reaction (=k/k1)
k
kf, kb heterogeneous rate constants of the forward and reverse charge transfer reactions
k apparent heterogeneous rate constant of charge transfer at E0
cc electron-transfer coefficient

E(t) time-dependent electrode potential
E0 formal standard potential of electroactive couple

=E(t)—E0
time elapsed between current application and measurement of the potential
blank period
total time (= t1 + t)
transition time for a CE process for an EPE
transition time for a CE process for an ESE
transition time for an E or EC process for an ESE

1(t) time dependent faradaic current [=I0?iewt, u — 1/2, Vw (case 1) or =10t,v, Vv
(case 2)]
value ofl(t) at u = w = 0 (case 1) or v = 0 (case 2)

m = [u — 1/6 (case 1) or v — 1/6 (case 2)]
Q dimensionless parameter (= wt)

dimensionless spherical correction parameter
0,i =
r distance from the center of the electrode

electrode radius at time t

A(t) time-dependent electrode area (=At'3)
A0 electrode area at ç Is (== (41r)113(3mHg/d)213)
A electrode area when t1 . t (stationary electrode) (=At/)
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a (3mHg/4lrd)"3
mHg, d rate of flow and density of mercury
ESE expanding spherical electrode
EPE expanding plane electrode
SSE stationary spherical electrode
SPE stationary plane electrode
C,(r, 1) concentration profile of species i (A, B, C or D)
C.(r0, t) surface concentration of species i

bulk concentration of species i
C+C= 2T(l +1/2)/JT((l +1)12)

F gamma Euler function
Other definitions are conventional.
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