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A theoretical study of the potential-time response corresponding to the CE and EC mechanisms$
at the DME by using non linear perturbation functions with the general form I(f) = I,*e** and
I() = Iy(#; + 1) is presented. Equations for the potential-time curves and for the transition
times have been derived by taking into account the sphericity of the electrode. Methods for
determining heterogeneous and homogeneous kinetic parameters are proposed. The expressions
corresponding to a null blank period, to an expanding plane electrode and to spherical and plane
stationary electrodes, can be deduced as particular cases of the equations obtained in this work.

We have previously developed the theory concerning the use of several non linear
current-time functions (ctf’s) at the dropping mercury electrode (DME), for charge
transfer reactions (ctr’s)!*2. The aim of this work is the application of that theory
to the study of the CE and EC mechanisms with different electrodes. The ctf’s used
can be divided into two types. First, functions which are the product of an exponential
by a power, i.e., I(t) = I te"" (the power law current and the exponential law current
are obtained as particular cases of this general function). Secondly, power law
functions of the total time, I(t) = I,t.. The broad class of ctf’s used in this paper
can be applied to any type of dependent-time area electrodes by using, necessarily,
a preceding blank period ¢, (ref.!).

Fot all the perturbations considered, we have deduced the concentration profiles
Cy(r, t), the surface concentrations Cj(ro, t) and the E[t response concerning both
processes, assuming the expanding sphere electrode model (ESE) for the DME.
The response corresponding to any stationary spherical electrode (SSE) and for any
stationary plane electrode (SPE) can be deduced as particular cases of our equations.

When the blank period t, is null, and the ctf has the simplified form I(t) = I,t",
our equations are coincident with those deduced by Galvez et al.>~>. For an ex-
panding plane electrode (EPE), and when the diffusion coefficients of all the species
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are equal, our equations are equivalent to those recently obtained by Kant and
Rangarajan® for power law currents.

Finally, methods for the calculation of kinetic parameters of the homogeneous
and heterogeneous steps are also proposed.

FORMULATION OF THE PROBLEM

The schemes corresponding to the CE and EC mechanisms are, respectively

ki ke

Be—=——C + ne——D, (I)
k2 kb
ke ks

A + ne (—k-———’ B (—k———; C. (11)
b 2

The boundary value problem (bvp) associated to process (I), neglecting double
layer effects, is given by

SBCB = _SCCC = _leB + k2Cc, (1)
8,Cp =0, )

t=0, r>r
O}CB=C§a Cc=C¢, Cp=Cp, 3

t>0, r—> o

t>0, r=ry:

Pe (%%) = (aaCrD> = n%tg,s)’ (4)

Dy (ac,,> =0, (5)

ar

Iy  _ - r
nF—A(‘s) = ke Cc(ro, 1) — ky Cp(ro, 1) - (6)

The bvp corresponding to process (II) can be obtained by changing D for A in
Egs (2)—(4), C for B and I(t) for —I(t) in Eq. (4), B for C in Eq. (5), and finally C
for A and D for B in Eq. (6).

8, is the operator corresponding to an ESE (ref.”)

2 3
5, =0 _p (o 429), 42 )
ot or? rar 3r2 or

and D, is the diffusion coefficient of species i.
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We have supposed for the processes (I) and (II) respectively

DB=DC=|=DD}. ®)
DA#DC=DC

We will consider the following general forms for the ctf applied to the DME
after a blank period ¢,.

1) Power-exponential law current of time
I(t) = Ipte™ u 2 —1/2, ¥w
la) power law current of time
I) =It*, uz—1/2
1b) exponential law current of time
(1) = Ie™ , ¥w
2) Power law current of total time ¢,
I(t) = Ipty, Vv
A discussion of the values of the exponents u, w and v can be found in refs’-2.

CASE 1: POWER-EXPONENTIAL LAW CURRENT

Using the transformations
(= Cs + Cc (9 )

@, = (Cy — KC¢) e (10)
Egs (/) and (2) are transformed into (process (I))
SCC = 83451 = SDCD =0. (11)

For process (II) we must change D for A in Eq. (1/).
By introducing the variables

_2(D;)'?

: (12), (13)

r — ro
S = ——- N 6 =
CoAp)trT T el
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t

1\1/3
B, = <_> , =kt, Q=wt (14)’ (15)’ (16)

s

we can deduce equations of the concentration profiles, as shown in Appendix I
(Eqs (A41)—(A3)), and also the expressions for the surface concentrations cor-
responding to a CE process, which are

Clro. ) _ 1 {1 _ N S (e By @) + KTofée x,,ﬁl,e)]}. (17)

C* Il + K r52/3
C (I' ,t) y N tm+2/3
e T Hee t T Sl 1 ). (18)

For an EC mechanism we find

C.(r s f) N tm+2/3
Ag: =1- _i(;‘?m___ Sm(ﬁA’ Bl’ Q) > (19)
A s
CB("O* r) ] ’))ECNEClm-'—Z/S
= Kuge + 20— [KS,(¢c i, @) + Tulle 100 B Q)14
c* 1 +K EC 1213 [ (éc. B1, Q) (¢cr 115 Bis Q)]
(20)
where
m=u—1/6 (21)
Dc\'/? cy 21,
‘}! = _— R { —_ s N - =9 22
. (Dn> Hee ™ T nFDL2 A (22)
Dy\'? ¢* 21,
Yec = | — , Mgc = —, Ngc=— 23
¥ <DB) S ST ) Y E Wor (23)

and the series S,, and T,, are defined in Appendix I.

The transition time corresponding to a CE mechanism is deduced from Eq. (17)

N (1, + 0" : (24)
NCE[Sm(éC,n ﬁl , T Qt) + KTM(CC,U Xl,ra Bl,v Qt)] .

where ¢, 21 By, and Q. are the values of these variables for t = 7.
The potential-time functions (ptf’s) can be deduced inserting Eqs (/7) and (18)
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in Eq. (6)
Negt" 220 cg(1) ™% 10 =
1
N 1 +K {fsz/s - Ncetm+2/3[sm(éc, Bi, Q) + KTolc: 115 By Q)]} B
— IOn('){”CEtfla + YeeNeet" 3 SM(éD’ Bis Q)} > (25)
pL/2

-1/2 _ C

QCE(,) = S (26)
nF

1) = Zrinto C0 ~ E) ( )

For a reversible ctr (k, > 1), Eq. (25) takes the more simple form

n(f) = log 1273 — Negt™ " 2P[Sul(écs B1» @) + KT, (¢cy 142 By 2]
(1 4+ K) [l‘cntsz/3 + YeelNegt™ 272 Sul&ps B1s Q)]

(28)

and for an irreversible one (k, < 1)

1, 123 — Nggt™*23[S,(Ec, Bys Q) + KT,(¢c, %1, B, 2
n(t) = ~ log - CE [Sul cmﬁ+12/3) _1§2c9X1 B, Q)] ) (29)
o (1 + K) NCEt @CE(I) €
The transition time deduced for an EC process from Eq. (19) is, as it is well known,
identical to that obtained for an E process’, and the ptf’s can be deduced by substi-
tuting Eqs (19) and (20) in Eq. (6). Then, we obtain

NECtm+2/3 @Ec(t)—I/Z eQ loan(t) — t52/3 _ NECtm+2/3 Sm(éA‘ Bls Q) .

10" ,
- 1 + K {K“Ethls + YECNECtm+2/3[KSm(éC’ ﬂl’ Q) + Tm(éCe X1» ﬁl* Q)]} ’ (30)
_ Dy/?
Op(t) 12 = 2k:;”2 . (31)

The ptf for an irreversible ctr is clearly coincident to that obtained for an E process®.

Power Law Current (Ia)

The equations corresponding to this case can be obtained by making g = 0 in the
series S,, and T,, (Egs (419) and (A420)).
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Exponential Law Current (1b)

Now, we can deduce the corresponding expressions by making m = —1/6 (4 = 0)
in the series S,, and T,, (Eqs (419) and (420)).

CASE 2: Power LAW CURRENT OF THE TOTAL TIME ¢,

The method used in this case differs from that used in the three preceding cases.
Now we should introduce a new variable @, defined as

@, = (Cp — KCo) e® (32)

instead of the variable @ defined in Eq. (10). Furthermore, the dimensionless para-
meter Q disappears, and instead of the variables §, and y, we must introduce the
variables f, and yx,, respectively, given by

B, = (1>”2 . 12 = kt,. (33), (34)

ts

In this way, we obtain the Eqs (B5)—(B8) in Appendix II for the surface con-
centrations.

RESULTS AND DISCUSSION

The equations obtained in this paper allow us to carry out a complete analysis of
the CE and EC processes using ctf’s corresponding to cases 1 and 2 (see the preceding
section). These equations give the concentration profiles (Eqs (41)—(A43) and (BI)—
—(B3)) and the surface concentrations (Eqs (17)—(20) and (B5)—(B8)). Here, we
will only employ the equations corresponding to surface concentrations for the
study of the E[t response obtained in the CE and EC processes. The analysis of
concentration profiles Ci(r, 1) requires a separate study and is not dealt with here.

GENERAL ASPECTS OF THE EQUATIONS

The Eft response for the CE and EC processes deduced for a ctf corresponding to
case 1 depends on the series S,, and T,, (Eqs (419) and (A420)), while that corresponding
to case 2 depends on the series V,, and W,, (Egs (B9) and (B10)).

The series S,, and V,, are the same as those deduced for an E process in both cases
(Eqs (419) and (B9)). The series T,, and W,, have been obtained in this paper, they
have upper and lower limits and satisfy the inequalities

0 é Tm(éia L1> Q) é Sm(éh ﬂl» Q) ’ (35)
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0= Wm(éi’ X25 ﬁz) = Vm(éi’ 52) . (36)

For large values of y, or x, the series T,, and W, are slowly convergent. In these
conditions, we may apply the steady state approximation®, and proceeding as in
a previous paper> we deduce

9
m(én Xl’ ﬂl’ Q) x”2 X[ > 1 . (37)

m(év Xz, ﬂZ) 2ﬂ2 1/2 Xz > 1 . (38)

In Fig. 1 we have plotted T,, vs x; when Q = 0 (case /a), for an EPE (¢ = 0)
corresponding to two limit situations: ¢, = 0 (8, = 1) and t; > t (B, = 0) (curves a
and b), and for an ESE ({c = 0-2 s~'/%) with the same values of B; (curves c and d).
It should be noticed that the influence of f, and £¢ on T, is small.

The influence of Qand m onT,,(case 1) is clearly shown in Fig. 2. 1t can be deduced
from the curves that Eq. (35) holds.

From the general equations (17)—(20) and (B5)—(BS8) it is possible to deduce
those corresponding to a great number of special situations, some of which have
already been described in the literature.
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Dependence of T,,(., xy, By, ) on x, (Eq. Dependence of T,,(., x;, By, ) on x; (Eq.
(A20)) for the case Ia) with m = 1/2. The (A20)) for the case 1. The values of 2 are
values of {  and B, are, respectively: a 0-0, shown on the curves. The values of m are:
1:0; b 0-0, 0-0; c 0-2, 1-0; d 0-2, 0-0 —1/2( ) 1/6 (— —); 5/6 (-+). ¢, = 0,

B =05

Collection Czechoslovak Chem. Commun. (Vol. 56) (1991)



8 ’ Molina, Lépez-Tenés:

a) Null Blank Period

In these conditions f; = B, = 1, x; = X, and the Eqs (419) and (420) for w = 0
and u 2 1/6 are equivalent to Eqs (B9) and (BI0) for v Z 1/6. Moreover, we have
the following relationships

1/2
SulCe By = 1, @ = 0) = Viée, s = 1) = S Gnl0.1)

Pem/7

(39)

1/2
Tm(éc, X1> ﬁl =1, Q= 0) = Wm(fc, Xz,ﬁz = 1) = (_3_/7)P—Gm,e(X) s (40)
6m/7

where the functions G,, (x) and g,,(0, t) are given by Egs (A7) and (42) in ref.*,
where there is no blank period (see also curves a and ¢ in Fig. 1).

b) Current Step I(t) = I,

This situation can be obtained from cases 1 and/or 2 by making w = 0 and u = 0

(m = —1/6) andfor v = 0 (m = —1/6), respectively. In these conditions we deduce
(Eqs (A419)—(A20) and (B9)—(BI10))
S_ 1/6(50 ﬁl) =V_ 1/6(€C, ﬂz) » (41)‘
T—-l/é(fC9 X1s ﬁ1) = W_ 1/6(6C, X2» ﬁz) s (42)
where
X
X2 = [7% : (43)

¢) Expanding Plane Electrode Model

We can deduce the equations corresponding to this particular situation by making
&, = 0 in all the expressions in this paper. This model has recently been studied by
Kant and Rangarajan®, for ctf’s corresponding only to cases a) and 2 of this paper,
and with the additioned assumption that the diffusion coefficients of all species are
equal. In these conditions, our equations are equivalent to those deduced by these
authors (see also Table I).

d) Stationary Electrodes

The DME, considered as an EPE (&; = 0) or as an ESE (&; # 0), can be transformed
into a stationary electrode of area 4 = A,t;'* by making t; > t (i.e. B; = f> =0,
curves b and d in Fig. 1). In this situation, the E/t response is much simple, and can
be compared with that given in ref.® and in the reviews of CE and EC mechanisms
in refs'®!!,
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TRANSITION TIMES

In Table I we show the values obtained for transition times corresponding to a CE
mechanism for an EPE (£, ¢ = 0)and for an ESE (&, ¢ # 0), for a ctf corresponding
to the case /a) and for different values of u and t,. We have selected the same con-
ditions as in Table II in ref.® to compare. As can be observed, the values of T, agree
with those obtained in this reference. We can also deduce that the sphericity effects
are important and they increase strongly when u decreases.

Table II shows the transition times 7, and 7 calculated for a ctf corresponding
to case 2. For this ctf, when v = 2/3 (the density of current remains constant) the

TABLE 1

Comparison between the transition times obtained from Eqs (24) and (37) when w = 0 (case Ia)
for an expanding plane electrode, 7, (§o,c = 0) and for and expanding sphere electrode, 7,
&oc=015 s~1/6y, Neg = 2:7s~™, K—~ 1, k=25s"1 ( ) Neg < (NcE)min

ty =05 t =1 ty =135 ty =2 ty =25
u

Tp T Tp Te Ty T T Te L Te
1 0983 1024 1-189 1-232 1-352 1-392 1-487 1:532 1609 1-657
2/3 0-849 0904 1137 1202 1-366 1436 1-566 1643 1746 1-830
1/2 0-726 0-787 1-076 1-157 1-362 1456 1-616 1726 1-849 1972
1/3 0-541 0598 0961 1-062 1334 1467 1:676 1-847 2:001 2:205
1/6 0294 0-328 0-742 0-853 1-233 1436 1745 2:065 2:271 2-721
0 0-079 0-085 0-378 0-442 0928 1-218 1-801 3420 3200 ~—

—1/30 0-053 0057 0296 0-344 0-819 1-120 1-799 - —_ -

TaBLE II
Comparison between the transition times obtained from Eqs (BS5) and (38) (case 2) for an ex-

panding plane electrode, 7, (, ¢ = 0) and for and expanding sphere electrode, 7, (¢, c=015
s™16) Neg= 245" K— 1, k=10s""!

=1 =15 =2 ty =25
v —_
Ty T Tp Te Ty Te Tp Te

1 0-187 0-197 0125 0-130 0-090 0-093 0-068 0-069
2/3 0-219 0-234 0-216 0-228 0-215 0-225 0-214 0-224
1/2 0-241 0-259 0-290 0-311 0-331 0-353 0-365 0-389
1/3 0-270 0-295 0-404 0-442 0-528 0-579 0-644 0-707
1/6 0-312 0-348 0-607 0-700 0-938 1-104 1-292 1-548
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effect of ¢t; on 7, and 7 is minimal. The sphericity effects are qualitatively similar
to those described for Table I.

The effects of reversibility (K) and rate constants (k) of the chemical reaction on
the transition times are similar to those described in refs*®

Equations (17) and (B5) can be rewritten as

(1 + K) Cc(ro, t) _ 1 _ o
{*N, N—CE Hm(fCa X1 B1s ) , (44)
(L+K) Celrart) _ 1 _ »
C*Ns NCE m(éc’ X2» ﬂZ) ) ( )

where

m(écs X1 ﬂl’ Q) 2/3 [Sm(CC’ Bl’ Q) + KT, (50 X1> ﬁl’ Q)] (46)

S

H,(¢c, 125 B2) = AR [Vm(fc, B:) + KW,(c, 22, B2)] - (47)

In the same way as for an E process, a study of the behaviour of the function H
with t permits us to determine the interval of existence of the transition time 7,
corresponding to a CE process. In Fig. 3 we have plotted H vs ¢ for a ctf with w =
= 0-15s"'andu = —1/3(case 1).In this situation there always exists a transition
time, but it presents a jump discontinuity with Ncg (ref.!). It can be observed that
the jump increases with k (i.e. as a CE process becomes an E process). In general,
the variation of H with ¢ is qualitatively similar to that described in refs'*? for an E
process, and when an Ng minimal exists, its value diminishes when k gets smaller.

10°3
n
107!
E
ooos — ;
Q o
tad 102
s / 10°
yE OSM FiG. 3
* Depedence of H,(, xy, By,£2) on ¢t for
a3 a CE process (Eq. (46)) for the case 1 with
w=015s"1 and m= —1/2. $o,c =015
o sT16 ¢ =1s, K= 1. The values of k
0 2 4 6 8 10 (ins™ l) are shown on the curves
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Finally, when u = —1/2 and for any value of w (case 1) there exists an N¢g maximal,
which is given by
(Nee) 2 (48
CE/max — (‘_1-{-—1()1[1_/2 . )

It is also possible to determine K for a CE process by following a similar procedure
to that described in refs*!2. So, from Eq. (24) we find

1/25%
lim (Iot’”+2/3) — nFADJ*{ p(6m+4)/3‘ (49)
Io~ 2(1 + K)

The existence of a blank time ¢, is of great interest for the determination of K,

since, if t; = 0 (ref.?), the current density necessary for Eq. (49) to be fulfilled is
quite high (it should be noticed that © becomes smaller as I, increases).

Once K is determined, the rate constants k; and k, can be obtained from the

working curves plotted in Figs 4 and 5. In these figures, we have represented (t/ty)" Y
vs x, for several values of K, with Y being

Y = (ﬂl,q)z Sm(éc,ﬂ ﬂl ,T9 Ql‘) , (50)
Sm(éc,t,p ﬂl,td’ Qtd)

ﬂl,t

>

Z £

he) o

(%] »

s s

0 10 20 30 0 10 20 30
XntT xXix

FiG. 4 FiG. §
Dependence of (/79)™ Y on x; . (Eq. (50)) Depedence of (t/74)™ Y on x; . (Eq. (50)) for
for the case la) with m= —1/2 ( ); the case 1 with m= —1/2 and = —0'5
m=0 (——=) m=1 (). §{ . =02 ( ); 2,=—01 (——=); . =1(").
B?_, = 0-5. The values of K are shown on the ﬁf,, = 0-7. Other conditions as in Fig. 4
curves
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e rar B ,ro and Q. are the values of these variables for t = 1,4 (see Symbols). Figures 4
and 5 show the influence of m and Q, on these curves. The influence of ¢, and B, .
is very weak and the range of the rate constants that can be determined does not
differ from that indicated in ref.3.

The transition time deduced for an EC mechanism is identical to that corresponding
to an E process, and the situation has already been discussed in refs!-2,

POTENTIAL-TIME CURVES

Figure 6 shows the sphericity effects on the E/t curves obtained for a CE process
with a ctf of the type 1a) for two different values of the blank period. In general,
these effects increase with ¢ and are more important when the exponents ¥ and w
(case 1), or v (case 2) decrease. Figure 7 shows the dependence of the E/t curves on K
for a reversible ctr. The influence of k, (Eq. (25)) is similar to that described in refs':2.

206,
100 \
100 '
‘0
> Toes ~
€
w -100 )
< \
-200 f |
-300
0 1 2 3
t,s
Fi1G. 6 Fic. 7
Electrode curvature effects on the potential- Potential-time curves corresponding to a CE
—time curves corresponding to a CE process process when k, > 1 (Eq.(28)) for the case 1
when kg > 1 (Eq. (28)) for the case 1 with a with u= 2/3 ( ) and for the case 2
w=01s"! and u=1 ( ), u=0 with v=2/3 (——). & c=015s"16,
(— —). The values of #; (in s) and Ngg t,=1s, Ngg=15s"Y2 Kk =10s"1,
(in s™™) are, respectively: a 1-0, 1-6; b 2-0, The values of X are: a 7:0, b 3-0, c 0-1. Other
1-85; ¢ 10, 2:0; d 2-0, 1:15. T= 298 K, conditions as in Fig. 6

n=1,ycg=1,pcg=0 k=10s"", K=
= 2. The .values of & ¢ (in s~'/%) are
shown on the curves
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When the ctr is irreversible, we deduce from Eq. (29)

RT nFAyk C* RT
AE = ——1In—2272 4+ " ng(ée x0 By Q) 51
anF (I + K)I, anF (e 21: 81 ) 1)
where
z e_!) m
gtSe- 115 Brs Q) = t’ij/g {’3/3 — Ncgt +2/3[5m(5c» B Q) + KTm(éo L1s /_3“ Q)]}

(52)

and the values of a and k, can be obtained through a linear regression of AE vs
Ing(&c, x1, By ). Moreover, if we take into account the influence of exponents u
and w on the reversibility of the ctr (ref.') it is possible to determine values of k, <
< 1072 cms™! by using this procedure.

For an EC process, it is not possible to deduce the constants K and k from measure-
ments of transition times. However, from the E/t curves corresponding to a reversible
ctr and when {* =+ 0 it is possible to estimate the value of K by an extrapolation at
zero time. In these conditions, from Eq. (30) we obtain

2/3 1/2
E(t > 0) — E° = RT,, ,,(!,,Jr,z,f), (2677 = Neer' ] u=—1/2, (53)
nF  2Kpect?”? + ppeNgen'?(1 + K)

RT | +K
Et-0)— =" 18y 12, (54)
nF Kpge
We have represented these curves in Fig. 8 for u = —1/2 and different values of K.

It is also possible to determine k, and k, in the way indicated in ref.® for t; = 0.

Finally, the dependence of E/t curves (Eq. (30)) on k, is shown in Fig. 9. We have
plotted the chronopotentiograms corresponding to a = 0-5 and five different values
of k,. These curves are shifted to more negative potentials when k decreases. Further-
more, when k; < 1073 cm s~ ! the process becomes totally irreversible, and therefore
the corresponding E/t curves are coincident to those obtained for an E process.
In these conditions we can determine « and k, in the way indicated in refs' 2.

CONCLUSION

We have analyzed the responses corresponding to CE and EC mechanisms when
a broad class of ctf’s, included in cases 1 and 2, is applied to the DME. The model
chosen for this electrode is that of an expanding sphere (ESE). The electrode sphericity
effects, which are maximal at the transition time, cannot be neglected when the
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14 Molina, Lopez-Tenés ¢

exponents of the ctf’s diminish. All the expressions obtained previously in the litera-
ture for CE and EC processes in chronopotentiometry with power or exponential
currents for planar and spherical electrodes can be deduced as particular cases of our
equations. The use of ctf’s corresponding to case 1 is of great interest, since they
show very different behaviour depending on the relative sign of exponents u and w.
We also propose methods for determining homogeneous and heterogeneous kinetic
parameters by using any of the ctf’s analyzed in this paper.

The authors greatly appreciate the financial support by the Direccion General de Investigacion
Cientificay Técnica (Project No. PB87-0700) and also by the Direccion Regional de Educacion
vy Universidad de la Comunidad Auténoma de la Region de Murcia (Project No. PCT89/19).

APPENDIX 1

Case 1. Power-Exponential Law Current

By using the transformations given by expressions (12)—(16) and supposing that {, ¢
and Cp have the form

Uryt) =%+ Z Qh,i,j,q(SC) cexmpie, (AI)

h,i,j,q=0

300,
100
ﬂos
=100
> - ~~—
£ E 107
4 4 -300
107?
500 o
10°°
-7
0 04 08 12 16
t, s
FiG. 8 FiG. 9
Potential-time curves corresponding to an Dependence of potential-time curves cor-
EC process when k; > 1 (Eq. (30)) for the responding to an EC process on k_ (Eq. (30))
case 1 with w=1s"! and u= —1/2. for the case 1 withw = —0-1s~ ' andu = 1.
Ngc= 03823, ¢, = 25, ypc = 1, pgc = 1, Ngc=13s"°6, Dy, =10"%cm?s™!, k=
k= 0-5s~1. The values of K are shown on =100s"!, K= 1. The values of k, (in
the curves. Other conditions as in Fig. 7 cms™!) are shown on the curves. Other

conditions as in Fig. 7

Collection Czechoslovak Chem. Commun. (Vol. 56) (1991)



Theoretical Study of CE and EC Mechanisms 15

(b(r, t) = \ Z On,i,j q(sC) éch+mﬂJ Q, (AZ)
,i,7,4=0
CD(r, 1) = Cch + Y Gh,i,j,q(sb) EpxiBI . (A3)
h,i,j,q=0

Equation (/1) is transformed into

Y , 3h + 6mi + 2j + 6
Qh,i,j,q(sc) + 2SCQh,|‘,j,q(sC) - ( J q) Oh,i,j q(sC)

3

= - { Z can iJ, q(SC) + Z d'QY i,j-3 ‘I(SC) +

S+g+1= r+y=h
+ $(h +J = 3)eniji 3450} (44)
" 3h+6m+t+2 + 6
S50 + 20hds) =2 LR
=—{ Z fa!/q(sC)+ Z déyt/ 3q(SC)+
S+g+1=h r+y=h
+$h'+j—3) 0., _3.450}, (45)
Y , 3h + 6mi+2j+ 6
Uh,i,j,q(so) + 2500h,i,j,q(sb) -2 (—“”‘ "“3"" j*i) Op.i,j q(sD) =
=_{ Z Csr auq(SD)"‘ Z draylj 3q(sD)
S+g+1=h r+y=h
+4(h+Jj—3)04:; 3460)} > (46)
where
e =2(=1)s, (47)
d,:%(—l)’(r+2)s§+' . (A8)

For an EC mechanism we must change D for A in Eqs (43) and (46).
The bvp corresponding to a CE process (Eqs (/)—(6) is transformed into

Si — 00:
Qh.i,j,q(sC) = 5h,i.j.q(5c) = Uh.i,j,q(so) =0, hijqz0 (A9)
s; = 0:
?ggl Qlln,i,j,q(o) = —U;.,i,j,q(o) (AIO)
0hijq0) =0 wunless h=0i=1,j=2 (411)

Collection Czechoslovak Chem. Commun. (Vol. 56) (1991)



16 Molina, Lopez-Tenés :

C*N,

G120 = 20 (412)
k"‘q'
. *N
00.1.2.40) = —K - q.i20. (A413)
A"‘q' i
Moreover
Oh1 .j,q(sD) = —YcE Qh.l,j.q(SD) . (AM)
. K .
Onija(Sc) = — I_' Qh.i,j.q(sc)- (Al5)

By following a similar prccedure to that indicated in refs'? we have deduced the
functions g, ; ;.,(sp) and ¢, ; ;. (sc) which are identical to the g, ; (s;) (i = D or C)
functions obtained in ref.! for an E process (Eqgs (4/0)—(AI8) in this reference)
if we change C) for {*Ng/k™. Moreover, for deducing the g, ; ; (sc) functions we
must also change m for (m + i) in the mentioned equations in ref.'. Therefore, the
concentration profiles (Eqs (A47)—(A3)) are determined totally.

- The Eqs (41)—(A3) are simplified at the electrode surface (r = ro) to

Uro 1) = 1 = "N BiS,(Ec. Brn Q)] (A16)
®(ro, 1) = KC*"NBIT,(Ec, 11, Brs Q) (417)
CD(rO‘ t) = C[*; + yg*tmNsﬂme(éD’ ﬂl’ Q) (A18)

with

Swul(Cir B1, Q) = 2{{(121’—6') — & Jy(m, g, By) + & Jom. q. By )} o

pm,q.4 Pm q,4
(419)

Tm(éC’ X1 Bl’ Q) = exp (—Xl)__ZOSm-H'(éC’ [))1’ Q) % ’ (AZO)

where p, .4, J(m, q, By), Ji(m, q, B;) and Jy(m, q, B,) are defined by expressions
(A25) and (A426) in ref.'. From Eqs (A/6)—(AI8) and taking into account Egs (9)
and (10) we deduce the expressions (/7) and (/8) for the surface concentrations.

By following a similar procedure to that described for a CE process we find the
Eqs (19) and (20) corresponding to the surface concentrations for an EC process.
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APPENDIX II

Case 2. Power Law Current of the Total Time t,

By taking into account the Eqs (/)—(8), (/12)—(/3) and (32)—(34), and supposing
that {, @ and Cp have the form

C(", N =+ Z Qh.i‘j(SC) CgX'zmﬁjz . (BI)

h.i,j=0
(b(l', t) = Z oh l]\s() €2X12+"1ﬁ1 ’ (BZ)

h.i,j=0

(I f) - Cl) + Z Gh i ,(\ ISD/IZ’"/{JZ' . (33)

h,i,j=0

where

m=yp — 1/6 R (34)

we deduce the functions g,y j(s¢), 6, {(sc) and o, f(sp) il we follow a similar
procedure to that indicated in Appendix I and in ref.’. The functions g, {(sc)
and ¢, ; ,(sc) are identical to the functions o, ; ,(sc) deduced in ref.? for an E process
(Eqs (42)—(A12) in this reference) if we write {*Ncg/k™ instead of Ci. Moreover,
for deducing the functions g, ; j(sc) we must also change m for (m + i) in the men-
tioned equations in ref.2.

In this way, we have deduced the expressions corresponding to the surface con-
centrations of the species C and D for the CE process

C . 1 N 1/2 B
C(Cr:: t) = 1 + K { tl(;il m [ (QC’ /32) + K Wm(éc’ XZ’ ﬁZ)]} ’ (Bj)
g'?(—g:lt—) = Hce + ycff\/[zc El ValCo: B2) (B)

For an EC process, by following a similar procedure, we deduce

Cu(ro, t Nget''?
.%g_) - 'tlE/i-m Vi(Enr ) - (B7)
A S

Cgl(ro, 1 N
"B(C’% t—) = ']"_;‘1“( {KHEC + yhfl/;c,’" [K Val&c, B2) + Wales 225 ﬁz)]} (B8)

S

with
Vm(iia ﬁz) = F(m’ :BZ) - 6i Fl(m’ BZ) - S:i F;(m’ BZ) (39)
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Wm(éi’ X2, ﬁz) = e—h.;OVm.yi(éi’ ﬂz) % ’ (BIO)

where F(m, B,), Fi(m, B,) and F,(m, B,) are defined by Egs (I7), (19) and (21)
in ref.?.

Since the convergence of the W, series is slightly slower than that corresponding
to the T,, series (Eq. (420)), in order to obtain accurate results, it is advisable to
choose the values of 7 in such a way that g2 < 0-5. Moreover, we have calculated

. a sixth term, G(m), in the F(m, B,) function which is given by

G(m) _ 6858432m°® — 109734912m> + 622550400m* — 1757257980m> +
64194923520
+ 2019452148 m? — 582399888m + 214128635 (BIJ)
64194923520
SYMBOLS

ki, k, rate constants of the chemical reaction

K equilibrium constant of the chemical reaction (=k,/k,)

k =k, + k,

ke, ky, heterogeneous rate constants of the forward and reverse charge transfer reactions

k apparent heterogeneous rate constant of charge transfer at E°

a electron-transfer coefficient

E(0) time-dependent electrode potential

E° formal standard potential of electroactive couple

AE =E(t) — E°

t time elapsed between current application and measurement of the potential

t blank period

t total time (=¢, + 1)

(N transition time for a CE process for an EPE

T transition time for a CE process for an ESE

74 transition time for an E or EC process for an ESE

I(t) time dependent faradaic current [=I,"e"’, u= —1/2, Vw (case 1) or =1Iyt’, Vv

(case 2)]

I, value of I(¢) at u = w = 0 (case 1) or v = 0 (case 2)

m = [u— 1/6 (case 1) or v — 1/6 (case 2)]

Q dimensionless parameter (= wt)

¢, dimensionless spherical correction parameter

Co.i = &3

r distance from the center of the electrode

o electrode radius at time ¢,

Alty) time-dependent electrode area (= Ayt2/3)

Ag electrode area at t, = 1s (= (4m)'/3(3my,/d)*/?)

A electrode area when 1, > ¢ (stationary electrode) (= 4y#3/3)
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a (3myg/and)'/3

my,, d  rate of flow and density of mercury
ESE expanding spherical electrode

EPE expanding plane electrode

SSE stationary spherical electrode

SPE stationary plane electrode

Ci(r,t) concentration profile of species i (A, B, C or D)
C;(ry, t) surface concentration of species i

ct bulk concentration of species i
o Cp + C¢

pj = 2I'(1 + //2)/T((1 + /)/2)

T gamma Euler function

Other definitions are conventional.
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